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PRIMITIVE RINGS WITH INVOLUTION 
AND PIVOTAL MONOMIALS 

BY 

PAUL C. DESMARAIS t AND WALLACE S. MARTINDALE, 3rd 

With the aid of ultrafilters an example is constructed of a primitive ring with 
involution and zero socle in which the symmetric elements S satisfy s 2 c  = s ,  c 

depending on and commuting with s (thus S satisfies the pivotal monomial x). 
However, by suitably restricting the definition of generalized pivotal monomial 
(essentially by making the variables linear) it is shown that a primitive ring 
with involution has nonzero socle if and only if the symmetric elements satisfy 
a restricted GPM. 

Let  C(x) be the free ring in the noncommuta t ive  indeterminates  x,  i =  

1,2, .--, with C a field and X = {x,, x2," �9 �9 }. For  A a C-algebra  with identity let 

Ao ={a , ,a : , . . . , ap}  be a finite collection of C- independent  e lements  of A. 

Denote  the free product  of A and C(x> over  C by A<x>. We define a monomial  

~r E A (x) to have the fo rm 

77" = a ~ x i j a i ~ x i 2  �9 �9 �9 x i k a i k  

where ai. EA0.  Let  P~ be the set of all monomials  or = 

a~xm,a,,...x,,,a,, E A(x> such that one of  the following holds: 

(1) l > k 

(2) l < k in which case j , ~  m, for  some t -<l or i ,#  n, for  some t < l .  

Call M the set of all monomials  in A(x> which have degree one in each 

variable. 

DEFINITION 1. For  S an additive subgroup of A, 

(1) 7r is a (right) generalized pivotal monomial  (GPM) for  S if 7r has the 

above  form and for  each algebra homomorph i sm ~b : A (x) ~ A with ~b (X)  _C S, 

qb(Tr) E ~b(P~)A ; 
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(2) 7r is a restricted GPM for S if 7r ~ M and for each algebra homomor-  

phism (as above) with ~ ( X )  C S, tk(~-) E 4~(P, N M ) A  ; 

(3) 7r is a pivotal monomial (restricted pivotal monomial) if 7r is a GPM 

(restricted GPM) with A0 = {i}. 

Let  R be a primitive ring which we consider as an irreducible ring of 

endomorphisms of an additive abelian group V, so that D = HomR(V, V) is a 

division ring. Let  C be the extended centroid of R (see, e.g., [6, p. 503]). It is 

easily verified [4, theor. 12, p. 453] that C is a subfield of the center of D. If R 

has an involution * then there is an involution defined on C. The central 

closure of R, defined to be A = R C  + C, is primitive and has an involution 

which simultaneously extends * on R and - on C, [6, theor. 4.1, p. 51 I]. We say 

R satisfies a GPM zr if ~ is a GPM for the additive subgroup R of R C  + C. 

In Section I we construct  an example to show that the hypothesis that the 

symmetric elements of a primitive ring with involution satisfy a GPM is not 

sufficient to guarantee a nonzero socle. In Section 2 we prove that if the 

symmetric elements satisfy a restricted GPM then the ring must have a nonzero 

socle. This generalizes a result of Amitsur [1, theor. 16, p. 225] where the ring 

itself is required to satisfy a GPM in order  to obtain a nonzero socle. 

Our aim in this section is to present an example of a primitive ring with 

involution and zero socle in which the symmetric elements satisfy the pivotal 
monomial x. 

Let  V be a countably infinite dimensional vector  space over  K, the real 

numbers,  with Hom~: (V, V) acting on V from the right. We represent  

HomK (V, V) as all row finite matrices over  K relative to a fixed basis of V and 

we let U be all the elements of Hom,~ ( V, V) which have the matrix representa- 
tion 

[o 0] 
where A is n x n and n varies. U has ordinary transpose as involution, 

denoted *, and is primitive (acting on V). In addition, let ( , )  be the standard 

inner product  relative to the fixed basis. We note that * is the adjoint relative 
to ( , ) .  

REMARK 2. If A E U and A * = A  then there exists a polynomial 
pA (x) E K [x ] such that A = A 2pA (A) .  
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PROOF. L e t A E U a n d A * = A .  F o r v E K e r A  n l m A , < v , v > = ( w A ,  v>= 

(w, vA> = (w,0) = 0 and the sum K e r A  + I m A  is direct. Since KerA has finite 

codimension,  Ker  A �9 Im A = V. Therefore  A restricted to Im A is I - I and 

there exists a polynomial  pA(X)E  K[x]  such that A p a ( A )  is the identity on 

Im A. A 2p,~ (A)  = A on Im A and is zero on Ker  A. Hence  A = A 2pA (A) on V. 

For  each n E N, the natural numbers ,  let U, = U, N, = N and denote  the 

direct products  H.~NU., II .~NN. as R and P respectively.  R has an involution 

�9 defined componentwise  by f* (n)  = (f(n))* where f E R and f ( n )  E U. for 

each n. Since [ E R is symmetr ic  if and only if each componen t  is symmetr ic  

Remark  2 extends to 

REMARK 3. I f  f E R a n d f *  = [ then f = f r where r depends on l a n d  rf = fr. 

Let  F be a non-principal ultrafilter on N. Define the mapping ~ : R ~ P by 

~ ( / ) ( n )  = r a n k f ( n )  for  each n E N. Form the *-ideal 

J = { f E R : 3 k  ~ N , G  E F ~ V n  E G ~ ( f ) ( n ) < k } .  

If  f E J then we say ~ (f) is bounded on G in F. For  f, g E R define the relation 

< on R by 

[ < g  iff { n E N : ~ ( f ) ( n ) < ~ ( g ) ( n ) } = G ~ F  

and we say ~ ( f ) <  ~ ( g )  on G. 

R~MARK 4. I f  x , y  E R with x < y then there exist r,s E R such that 

x - rys E J. 

PROOF. X < y means ~ ( x )  < ~ ( y )  on some G E F. It is well known that for  

each n E G  there exists r. and s. such that x. = r.y.s.. For n ~ G  let 

r. = s .  = 0 .  Then x - r y s  E J  since ~ ( x - r y s ) = O  on G. 

We are indebted to Frank Wattenberg for  the following method of construc-  

tion. Let  L be the set of all sequences )t = ()t,, ;t2,. �9 �9 ) of natural numbers  such 

that for each G E F {Ak}k~ is unbounded.  L is non-empty  since F is a 

non-principal ultrafilter. For each )t E L define the idempotent  e~ by its matrix 

representat ion 0] 
where I is the ~, x A, identity matrix. Let  E be the set of all such idempotents .  

Finally let (x , J )  denote the ideal generated by x E R and J. 

REMARK 5. 

(a) E I'1 J = 
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(b) eA < e~ implies e~e~ - e, E J 

(c) x E R \ J  implies there exists eA E E such that e, < x and (e , ,J)  ~ (x ,J)  

(d) { e , , e : , . . . , e , } C _ E  implies there exists e A E E  such that e~<e , ,  i =  

1 , 2 , . . . , n .  

PROOF. Parts (a) and (b) follow from the definitions of  E, Jr, < and the 

propert ies  of an ultrafilter. For (c) assume x ~ J  so that A = 

{n E N : ~ ( x ) ( n )  < 4 } ~  F and A '  (the complement  of A in N)  E F. Define the 

sequence A by A. = [ ~ ] ,  i.e. the greatest  integer less than or equal to 

X/rank x,, if n E A '  and A, = 1 if n E A. A E L, otherwise ~ (x) is bounded on 

some element  of F. By definition, e, ~ E and eA < x. By Remark 4, there exist 

r, s ~ R such that e, - rxs E J. Hence  e, E (x, J )  and (e,, J )  C_ (x, J) .  However ,  

if x E (e,, J )  then x = E,=,. pr, e, si + j and ~ (x) < p3~ (cA) + k on A '  n G where 

~ ( . / ) < k  on G E F  and k ~ N .  Therefore  ~ ( x ) < ( p + k ) ~ ( e , ) =  

( p + k ) [  r a X / ~ n k ~ ] o n A ' N G .  T h i s i m p l i e s ~ ( x ) < ( p + k ) 2 o n A ' n G E F ,  a 

contradiction since x ~  J. Therefore  ( e , , J ) ~ ( x , J ) .  

The last part is obtained by using the propert ies  of an ultrafilter to conclude 

eje.,. �9 �9 e, E E. Then part (c) gives e, E E such that e~ < e~e2. �9 �9 e, f rom which 

it follows that e~ <.e,, i = 1 , - . . ,  n, and the proof  is complete.  

Let  T = J + Y'A~L (1 -- e, )R where (1 - e , )R  = {r - ear : r E R} is a right ideal 

in R. We claim E n T = O. If not, there exists e, E T and e, ~ E,. , . ,  (r~ - e~r~) + 

J. By part (d) of Remark  5 there exists e ~ E E  with eA<e~ and e ~ < e ,  

i = l , . . . , n ,  e,e, E e , ( E r ~ - e i r , + J ) C E ( e ~ r ~ - e ~ e ~ r , ) + J C J  since e , e , - e , ~ J  

follows f rom e~ < e~ and Remark  5(b). Moreover  e,e~ - e~ E J implies e, E J, a 

contradiction. Hence  E n T = ~ and T is a proper  right ideal of  R contain- 

ing J. 

Let  H be the collection of all proper  right ideals, I, of R such that T C I and 

E n I - - ~ . A p p l y  Zorn 's  lemma to this non-empty  co l l ec t ion(T  ~ H ) , w h i c h  

is partially ordered by inclusion, to obtain a right ideal M, maximal with respect  

to T _C M and E N M -- ~ .  M is in fact  a maximal right ideal of  R since if I is a 

right ideal which properly contains M then there exists eA ~ E such that e~ E I. 

But M C_ I implies (1 - e~)R C_ I and therefore  R = (1 - e, )R + eAR C_ I. Hence  

M / J  is a maximal right ideal in R / J  and R / M  ~ - ( R / J ) / ( M / J )  has no proper  

right R / J  submodules .  

We claim R / M  is a faithful irreducible R / J  module. It is enough to show 

R I M  is faithful. If  not, then there exists x + J ~ J  such that for  each 

y + M E R / M ,  (y + M)  (x + J )  _C M. Hence  yx E M for  ai |  y ~ R. By Remarks  4 
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and 5(c) there exists e~ ~ E with e~ < x  and e, + j  = rxs for some j E J  and 

r, s E R .  Letting y = r , e ~ + j - - r x s = y x s E M s C _ M  and so e~UM,  a con- 

tradiction. 

REMARK 6. R / J  is a primitive ring with involution whose symmetric elements 

satisfy the pivotal monomial  x but which has zero socle. 

PROOF. R / J  has already been shown to be right primitive. Since J*  = J in R 

the involution in R lifts to R/J.  In addition if x + J is symmetric in R / J  then x 

can be assumed to be symmetric in R, since R does not have characteristic 2. 

Consequently if s + J  is symmetric in R / J  then s = s2r in R and sr = rs by 

Remark 3. Hence s + j = (s + J)2(r + J) and (s + J)(r + J) = (r + J)(s + J). 

All that remains is to show that R / J  has zero socle. Assume not and let Q be 

the socle, i.e. 0 ,~ Q is the unique minimal ideal of R/J.  Let 0 ~ x + J ~ Q. Then 

the ideal generated by x + Jr, (x + J) ,  is Q. Since x ~ J there exists by Remark 

5(c) e ~ < x  with (e~,J)C_(x,J) in R. Therefore  in R / J  we have 0 ~ ( e , +  

J)  ~ (x + J)  = Q, a contradiction. Hence Q is the zero ideal. 

As the preceding proof shows we have obtained an example of a primitive 

ring with involution whose symmetric elements satisfy s2r = s where r 

depends on s and commutes  with s. Chacron, Herstein, and Montgomery ([2]) 

have recently proved the following result: a primimtive ring with involution in 

which s 2 p , ( s ) - s  is central for each symmetric element,  where p, ( s )  is a 

polynomial in s with integral coefficients, is at most 4-dimensional over  its 

center.  Our example thus indicates limitations on attempts to generalize this 

result. 

2 

In this section we let V be a right vector  space over  D a division ring and let 

C be a subfield of the center of D. We may view D as contained in 

Homc (V, V), which then becomes a right D-space.  

DEFINITION 7. For f E Home(V,  V), the D-rank of [ is the dimension over  

D of the D-subspace of V spanned by Vf. 

The following fundamental lemma is due to Amitsur [1, lemma 4, p. 214]: 

LEMMA 8. Let b , , b 2 , . . . , b k  be right D-independent endomorphisms o f  V 

over D. I f  Vo C_ V is a finite dimensional right D-subspace then either there exists 

v E V such that v b , , . . . ,  vb~ are D-independent modulo Vo or some E,bid~ ~ O, 

d~ ~ D, has finite D-rank. 

Let R be primitive as in the introduction with D = Horn,  (V, V) and C, the 

extended centroid of R, contained in the center  of D. For  the remainder of this 

section A = R C  + C will denote the central closure of R. 
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LEMMA 9. 

(1) I f  a and b are elements o [ A  such that axb = bxa for all x E R then a and 

b are C-dependent. 

(2) A (~cD ~- A D  (the C-subalgebra of  H o m e ( V ,  V) generated by A and 

D). 

(3) In A,  C-independence is equivalent to D-independence. 

(4) I f  A D  contains a nonzero finite D-ranked transformation then R 

contains a nonzero finite ranked transformation. 

PROOF. (1) is a special case of [6, theor. 2.1, p. 504]. The proof  of (2) follows 

exact ly as in [6, theor. 2.2, p. 504] and is included here for  completeness .  Define 

dp:A @cD---~AD by cb:a@d--->ad, ck is obviously a C-algebra  homomorp-  

hism. If Kerd,  contains a nonzero e lement  b =Z~_~. ,a iQd,  a ~ E A ,  d~ED,  

then we may assume b is of minimal " length"  n. Hence  the {a~} and the {d~} are 

C- independent  collections in A and D respectively.  We may assume n > 1 

since ad = 0 implies a = 0 and d = 0. For each x • R, 

( a,x ~ l )b  - b (xa, ~ i) = ~ ( a,xa, - a,xa,) ~ d~ 
i - 2 , •  

has length less than n and is in Ker~b. The C- independence  of the {d~} gives 

a , x a , - a , x a ~ = O  for each x E R ,  i = 2 , . . . , n .  By part  ( l) ,a~=[3~a, ,[3~EC, 

i = 2 , . . . ,  n, a contradict ion to the C- independence  of the {a~}. 

(3) is immediate  f rom (2). For (4) assume A D  contains a finite D- ranked  

t ransformat ion 0.~ b = Ei~,,a,d~ which we assume to be of minimal " length"  

n. By the same reasoning as in the proof  of (2) we obtain a, = [3,a,, f3, E C, 

i = 2 , . . . , n  since a , x b -  bxa, has finite D- rank  in A for  all x E R. There-  

fore letting [3~ = I, we have b = a,(Y.~_,.,[3~d~) and 0 ~  E~=,.,[3~d~ E D. Hence  

O~ a, E A = RC  + C has finite D-rank.  Actually, a, has finite rank over  D 

since a~ E RC  + C C_ Homo ( V, V). Choose r E R such that 0 ~ ra, E RC. Then 

R C  has a nonzero finite ranked t ransformat ion denoted q = ~:,.,.,r,c,. There  

exist U, nonzero ideals of R, such that c,U~ C_ R for  each i [5, sec. 2, p. 577]. 

The ideal U = I'-'1 ~_~.,U~ is nonzero since R is prime. Then q U  C_ R is a 

collection of finite ranked t ransformat ions  in R. q U ~  O, otherwise q U C = 0 

which is a contradict ion since UC is a nonzero ideal of the prime ring RC. 

Hence  R has nonzero socle and the proof  is complete.  

Now we assume that R has an involution *. The concept  of weak density, 

used by Martindale [6, pp. 508-515], can be extended as follows: 

DEFINmON 10. A subset  S of R _C HOmD(V, V) is *-weakly dense in A if it 

has the following property:  given vj, v2, �9 �9 vk, D- independent  e lements  of  V, 
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b,, b2,. �9 b,,, right D-independent  elements of A and Uo any finite dimensional 

D-subspace  of V, then one of the following is true: 

(l) Zi=,.mb,D contains a nonzero transformation of finite D-rank;  

(2) E~. , .~b*D contains a nonzero transformation of finite D-rank;  

(3) There exists r C S  such that vmrb, ,v , rb2 , . . . , v , rb~ are D-independent  

modulo Uo and vir = 0 for i > I. 

LEMMA l I. I f  R is a primit ive ring with * then the symmetr ic  elements,  S, o f  

R are *-weakly  dense in A.  

PROOF. Let  v,, v2,. �9 ", vk be D-independent  vectors in V, let b,, b2,. �9 b,, be 

right D-independent  elements of A, and let Uo be a finite dimensional 

D-subspace  of V. Assume neither (I) nor (2) holds in Definition 10. 

There exists x E R such that v j x ~  0 and v~x = 0, i > I. The D- independence  

of b * , . . . , b *  in A follows from Lemma 9(3), since Zb*c ,  =0 ,  0 ~ c i  E C ,  

implies EtY,b, = 0, which contradicts the D-independence of the {b, }. Since (2) is 

false, Lemma 8 can be applied to the D-independent  transformations 

b *,--  -, b*  to obtain w E V such that {wb*} is a D- independent  set modulo the 

subspace generated by v,, v2 , . . . ,  v~. At this point we deal with two cases: 

a) If R has zero socle, pick r E R  such that v~r=O, i =  1 , 2 , . - . , k  and 

w b * r  = w b * , i  = 1 ,2 , - . . ,m.  If {b ' r}  is a D-dependent  set then E(b*r )d j  = 0  

for some d ; ~ 0 .  Hence  0 =  Ew(b*r )d~  = E w b * d ,  a contradiction to the D-  

independence of the {wb*}. Consequently { b ' r } ,  and hence {r 'b,},  is a D- 

independent  set. Since R has no nonzero finite ranked transformations,  Lemma 

8 assures the existence of v ~ V such that {vr*b~} is a D-independent  set 

modulo Uo. 

b) If R has nonzero socle M, then M is an ideal of A such that M* -- M and 

M acts densely on V. Pick y ~ M  such that v ~y =v ,  i = l , 2 , . . . , k  and 

wb *y = O, i = l, 2, . . ., m. Set  r = l - y and note  that v~r = O, i = l, 2, . . ., k and 

w b * r =  wb* ,  i =  1 , 2 , . . . , m .  As in case a), {b ' r} ,  and hence {r 'b,}, is a 

D- independent  set. Since y E M and y * E  M, it is clear that no nonzero 

D-linear combination of ( I -  y*)b l , - "  . , ( I -  y*)b~, is of finite D-rank. Again 

apply Lemma 8 to obtain v E V with {vr*b~} a D-independent  set modulo U0. 

We finish the proof by choosing t E R  such that vlxt  = v .  Then 

v , ( x t r * + r t * x * ) b j = v r * b j ,  j = l , 2 , . . . , m  and v ~ ( x t r * + r t * x * ) = O  for i > l .  

Since x t r * +  r t * x * E  S, the proof  is complete.  

For  the remainder of this section S will denote the symmetric elements of R. 

LEMMA 12. Le t  Ao={a~ ,a2 ,  ..  . ,ap} be a finite C- independent  subset  o f  A 

and  suppose  neither A oD nor  A ~D contains  a nonzero finite D-ranked  transfor-  
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mation.  Then for  any sequence  a,o, ai,," �9 �9 o f  e lements  o f  Ao there exists v @ V 

and  a sequence  
Uo, Wo, s,, U,,  W1, s 2 , "  ", Ut, W, , s t+, .  . . 

such that  

(1) Uo = Ej=~,pvajD, Wo = E ~ v a ~ D ,  s, E S 

(2) {va~s~a~,s2... a,,_,s~aj}j=~.p is a D - i n d e p e n d e n t  set modulo  Ut-, 

(3) Ul = Ut ~ + Ej_, .pva~sja, ,s2. . .  a,,_,stajD 

(4) Wt = U H  + Ej~,va~s~a,,s2. �9 �9 a,,_,s~ajD 

(5) W, s N  = 0 .  

PROOF. A0 is a D- independent  collection by L e m m a  9(3). Since A o D  

contains no nonzero finite D- ranked  t ransformat ion,  L e m m a  8 yields v E V 

such that {vaj}j=j.p is a D - i n d e p e n d e n t  set of  vectors  in V. The D - s u b s p a c e  

spanned by {va~} is denoted Uo = Ej=,.,va~D. Let  Wo = E j ~ v a j D .  Since neither 

AoD nor A ~D contains a nonzero  finite D- ranked  t ransformat ion we can apply 

L e m m a  11 to obtain st E S such that va~sla~ are all D- independent  modulo Uo, 

j = 1 , . . . , p  and Wos, = 0. Proceeding inductively we obtain the desired sequ- 

ence where Ut and Wt are defined as in (4) and (5) and s,_, is chosen,  using 

L e m m a  11, so that va~s~a~,...a~,s~+laj are all D- independent  modulo U~, 

j = 1 , 2 , . - . , p  and Wlst+~ = 0 .  

THEOREM 13. Le t  R be primit ive with *. Suppose  the symmetr ic  elements,  S, 

o f  R satisfy a restricted GPM zr. Then A oD or  A *D contains  a nonzero 

t rans format ion  o f  finite D-rank.  

PROOF. Assume neither A o D  nor A * D  contains a nonzero t ransformat ion 

of finite D-rank .  7r E M, so the indeterminates appearing in ~r are all distinct 

and af ter  renumbering the subscripts  on the indeterminates we may suppose 

that 

77" ~ -  a l o x  l a i l X  2 �9 " " a i k _  l x k a i k .  

By L e m m a  12 we have v E V and symmetr ic  e lements  s,, s2 , . . - ,  sk such that 

va~s~a~,. �9 �9 skaj are D- independent  modulo Uk-~, j = 1,. �9 . ,p,  and Wj-~st = 0 for  

l ~ k .  

Consider the substitution 4, : R (x) ~ R defined by 4, (xt) = st for  1 =< l _--- k 

and ~b(Xl) = 0 for l > k. v~b(Tr) # 0 since v~b(Tr) is one of the D- independen t  

vectors  modulo U~-I. ~b(Tr)=Z,~(~r,)di, where d, C A  depends on ~ and 

o-, ~ P,~ O M. We will show that v~b(o-,)= 0 for  all i, a contradict ion to 

v4~(rr) ~ 0. 
We can assume each ~r, in the sum contains only the indeterminates  x~ for  

j = 1 , . . - , k .  Le t  
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Ori = a.oX~,fln,x, ,  z �9 " " X,.~o.~ E M .  

Each xj in o-, occurs at most once. We divide the argument into two cases. 

(1) Assume ~r, and rr first disagree (from left to right) at x, so that x, ~ xj for  

. /= m,. Since o'~ E M, j > t and vdp(a~x,a,, . . �9 a,, ,xj) ~ U,_~sj C W,s~ C_ Wj-,si  = 

0 by Lemma 12. Hence v~b(~r,)= 0. 

(2) Assume ~r, and 7r first disagree at a,,, i.e., a,, ~ an,. Then t < k and (r~ does 

not end with a,,. v c b ( a ~ x , . . . x , a , , x j ) E  W, sj c_ Wj_,s~ where cr~ begins with 

a~x,a , , . .  �9 x,a,,xi and j > t. By Lemma 12, W~_~sj = 0 and hence v~(o-~) = 0. 

v4,(o',) = 0 in either case and we have the desired contradiction. 

COROLLARY 14. The s y m m e t r i c  e lements  o[  a pr imi t ive  ring R with involu-  

t ion satis[y a restricted GPM i[ and  only  i f  R has  nonzero socle. 

PROOF. Sufficiency follows from Theorem 13 and Lemma 9(4). The neces- 

sity follows by choosing any rank one idempotent e in R and verifying that 

7r = exeye is a restricted GPM for R. Hence 7r is a restricted GPM for S. 

COROLLARY 15. I[ the s y m m e t r i c  e lements  o f  a pr imi t ive  ring R with involu-  

tion satis[y a restricted p ivota l  m o n o m i a l  then R -~ D,, the n • n matr i x  ring 

over  D, a division ring. 

PROOF. Since Ao={l},  Theorem 13 states A o D = A $ D = D  contains a 

nonzero finite D-ranked transformation and hence (v : D ) <  ~. 

Corollary 14 is a generalization of Amitsur 's Theorem 16 in [1, p. 225] while 

Corollary 15 is a generalization of Drazin's result ([3, theor. 4, p. 357]) that a 

primitive ring satisfying a pivotal monomial must be /9,. The example of 

Section I shows that requiring the symmetric elements to satisfy a pivotal 

monomial does not guarantee any nonzero finite ranked transformations.  
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