PRIMITIVE RINGS WITH INVOLUTION AND PIVOTAL MONOMIALS

BY

PAUL C. DESMARAIS[†] AND WALLACE S. MARTINDALE, 3rd

With the aid of ultrafilters an example is constructed of a primitive ring with involution and zero socle in which the symmetric elements S satisfy $s^2c = s$, c depending on and commuting with s (thus S satisfies the pivotal monomial x). However, by suitably restricting the definition of generalized pivotal monomial (essentially by making the variables linear) it is shown that a primitive ring with involution has nonzero socle if and only if the symmetric elements satisfy a restricted GPM.

Let $C\langle x \rangle$ be the free ring in the noncommutative indeterminates x_i , $i=$ 1, 2, \cdots , with C a field and $X = \{x_1, x_2, \cdots\}$. For A a C-algebra with identity let $A_0 = \{a_1, a_2, \dots, a_p\}$ be a finite collection of C-independent elements of A. Denote the free product of A and $C\langle x \rangle$ over C by $A\langle x \rangle$. We define a monomial $\pi \in A \langle x \rangle$ to have the form

$$
\pi = a_{i_0}x_{j_1}a_{i_1}x_{j_2}\cdots x_{j_k}a_{i_k}
$$

where $a_{i_m} \in A_0$. Let P_{π} be the set of all monomials $\sigma =$ $a_{n_0}x_{m_1}a_{n_1}\cdots x_{m_l}a_{n_l} \in A\langle x\rangle$ such that one of the following holds:

$$
(1) \quad l > k
$$

(2) $l \leq k$ in which case $j_i \neq m_i$ for some $t \leq l$ or $i_i \neq n_i$ for some $t < l$. Call M the set of all monomials in $A(x)$ which have degree one in each variable.

DEFINITION 1. For S an additive subgroup of A ,

(1) π is a (right) generalized pivotal monomial (GPM) for S if π has the above form and for each algebra homomorphism $\phi : A \langle x \rangle \rightarrow A$ with $\phi(X) \subset S$, $\phi(\pi) \in \phi(P_\pi)A$;

Received April 7, 1975

t Portions of this paper are from the first author's Ph.D. thesis completed under the direction of W. S. Martindale, 3rd, at the University of Massachusetts, Amherst, Mass.

(2) π is a restricted GPM for S if $\pi \in M$ and for each algebra homomorphism (as above) with $\phi(X) \subset S$, $\phi(\pi) \in \phi(P_{\pi} \cap M)A$;

(3) π is a pivotal monomial (restricted pivotal monomial) if π is a GPM (restricted GPM) with $A_0 = \{1\}$.

Let R be a primitive ring which we consider as an irreducible ring of endomorphisms of an additive abelian group V, so that $D = \text{Hom}_R(V, V)$ is a division ring. Let C be the extended centroid of R (see, e.g., [6, p. 503]). It is easily verified [4, theor. 12, p. 453] that C is a subfield of the center of D. If R has an involution $*$ then there is an involution $\overline{}$ defined on C. The central closure of R, defined to be $A = RC + C$, is primitive and has an involution which simultaneously extends $*$ on R and \bar{C} on C, [6, theor. 4.1, p. 511]. We say R satisfies a GPM π if π is a GPM for the additive subgroup R of $RC + C$.

In Section I we construct an example to show that the hypothesis that the symmetric elements of a primitive ring with involution satisfy a GPM is not sufficient to guarantee a nonzero socle. In Section 2 we prove that if the symmetric elements satisfy a restricted GPM then the ring must have a nonzero socle. This generalizes a result of Amitsur [1, theor. 16, p. 225] where the ring itself is required to satisfy a GPM in order to obtain a nonzero socle.

 $\mathbf{1}$

Our aim in this section is to present an example of a primitive ring with involution and zero socle in which the symmetric elements satisfy the pivotal monomial x.

Let V be a countably infinite dimensional vector space over K , the real numbers, with $\text{Hom}_K(V, V)$ acting on V from the right. We represent $Hom_K (V, V)$ as all row finite matrices over K relative to a fixed basis of V and we let U be all the elements of $\text{Hom}_K (V, V)$ which have the matrix representation

$$
\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}
$$

where A is $n \times n$ and n varies. U has ordinary transpose as involution, denoted *, and is primitive (acting on V). In addition, let \langle , \rangle be the standard inner product relative to the fixed basis. We note that * is the adjoint relative to \langle , \rangle .

REMARK 2. If $A \in U$ and $A^* = A$ then there exists a polynomial $p_A(x) \in K[x]$ such that $A = A^2 p_A(A)$.

PROOF. Let $A \in U$ and $A^* = A$. For $v \in \text{Ker } A \cap \text{Im } A$, $\langle v, v \rangle = \langle wA, v \rangle =$ $\langle w, vA \rangle = \langle w, 0 \rangle = 0$ and the sum Ker A + Im A is direct. Since KerA has finite codimension, Ker A \oplus Im A = V. Therefore A restricted to Im A is 1 – 1 and there exists a polynomial $p_A(x) \in K[x]$ such that $Ap_A(A)$ is the identity on Im A. $A^2 p_A(A) = A$ on Im A and is zero on Ker A. Hence $A = A^2 p_A(A)$ on V.

For each $n \in N$, the natural numbers, let $U_n = U$, $N_n = N$ and denote the direct products $\Pi_{n\in\mathbb{N}}U_n$, $\Pi_{n\in\mathbb{N}}N_n$ as R and P respectively. R has an involution * defined componentwise by $f^*(n) = (f(n))^*$ where $f \in R$ and $f(n) \in U_n$ for each n. Since $f \in R$ is symmetric if and only if each component is symmetric Remark 2 extends to

REMARK 3. If
$$
f \in R
$$
 and $f^* = f$ then $f = f^2r$ where r depends on f and $rf = fr$.

Let F be a non-principal ultrafilter on N. Define the mapping $\Re : R \to P$ by $\mathcal{R}(f)(n) = \text{rank } f(n)$ for each $n \in \mathbb{N}$. Form the *-ideal

$$
J = \{f \in R : \exists k \in N, G \in F \exists \forall n \in G \mathcal{R}(f)(n) < k\}.
$$

If $f \in J$ then we say $\Re(f)$ is bounded on G in F. For $f, g \in R$ define the relation $<$ on R by

 $f < g$ iff $\{n \in N: \Re(f)(n) < \Re(g)(n)\} = G \in F$

and we say $\mathcal{R}(f) < \mathcal{R}(g)$ on G.

REMARK 4. If $x, y \in R$ with $x \le y$ then there exist $r, s \in R$ such that $x - rys \in J$.

Proof. $x < y$ means $\mathcal{R}(x) < \mathcal{R}(y)$ on some $G \in F$. It is well known that for each $n \in G$ there exists r_n and s_n such that $x_n = r_n y_n s_n$. For $n \notin G$ let $r_n = s_n = 0$. Then $x - rys \in J$ since $\Re((x - rys)) = 0$ on G.

We are indebted to Frank Wattenberg for the following method of construction. Let L be the set of all sequences $\lambda = (\lambda_1, \lambda_2, \dots)$ of natural numbers such that for each $G \in F$ { λ_k } $_{k \in G}$ is unbounded. L is non-empty since F is a non-principal ultrafilter. For each $\lambda \in L$ define the idempotent e_{λ} by its matrix representation **0]**

$$
e_{\lambda}(n) = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}
$$

where I is the $\lambda_n \times \lambda_n$ identity matrix. Let E be the set of all such idempotents. Finally let (x, J) denote the ideal generated by $x \in R$ and J.

REMARK **5.** (a) $E \bigcap J = \emptyset$ (b) $e_{\lambda} < e_{\lambda}$ *implies* $e_{\lambda}e_{\lambda} - e_{\lambda} \in J$

(c) $x \in R \setminus J$ implies there exists $e_{\lambda} \in E$ such that $e_{\lambda} < x$ and $(e_{\lambda}, J) \neq (x, J)$

(d) $\{e_1, e_2, \dots, e_n\} \subseteq E$ implies there exists $e_{\lambda} \in E$ such that $e_{\lambda} < e_i$, i= $1, 2, \dots, n$.

PROOF. Parts (a) and (b) follow from the definitions of E, J, \le and the properties of an ultrafilter. For (c) assume $x \notin J$ so that $A =$ ${n \in N : \mathcal{R}(x)(n) < 4}$ $\notin F$ and A' (the complement of A in N) $\in F$. Define the sequence λ by $\lambda_n = [\sqrt{\text{rank } x_n}]$, i.e. the greatest integer less than or equal to $\sqrt{\tan k} x_n$, if $n \in A'$ and $\lambda_n = 1$ if $n \in A$. $\lambda \in L$, otherwise $\Re(x)$ is bounded on some element of F. By definition, $e_{\lambda} \in E$ and $e_{\lambda} < x$. By Remark 4, there exist $r, s \in R$ such that $e_{\lambda} - rxs \in J$. Hence $e_{\lambda} \in (x, J)$ and $(e_{\lambda}, J) \subset (x, J)$. However, if $x \in (e_{\lambda}, J)$ then $x = \sum_{i=1}^{\infty} r_i e_{\lambda} s_i + i$ and $\Re(x) < p\Re(e_{\lambda}) + k$ on $A' \cap G$ where $\Re(j) < k$ on $G \in F$ and $k \in N$. Therefore $\Re(x) < (p+k)\Re(e_{\lambda})=$ $(p+k)[\sqrt{\text{rank }x_n}]$ on $A' \cap G$. This implies $\Re(x) < (p+k)^2$ on $A' \cap G \in F$, a contradiction since $x \notin J$. Therefore $(e_{\lambda}, J) \not\geq (x, J)$.

The last part is obtained by using the properties of an ultrafilter to conclude $e_1e_2\cdots e_n \in E$. Then part (c) gives $e_{\lambda} \in E$ such that $e_{\lambda} < e_1e_2\cdots e_n$ from which it follows that $e_{\lambda} < e_{i}$, $i = 1, \dots, n$, and the proof is complete.

Let $T = J + \sum_{\lambda \in L} (1 - e_{\lambda})R$ where $(1 - e_{\lambda})R = \{r - e_{\lambda}r : r \in R\}$ is a right ideal in R. We claim $E \cap T = \emptyset$. If not, there exists $e_r \in T$ and $e_r \in \sum_{i=1,n} (r_i - e_i r_i) + \sum_{i=1}^n (r_i - e_i r_i)$ J. By part (d) of Remark 5 there exists $e_{\lambda} \in E$ with $e_{\lambda} < e_{\gamma}$ and $e_{\lambda} < e_{i}$, $i=1,\dots,n$. $e_{\lambda}e_{\lambda} \in e_{\lambda}(\Sigma r_i-e_ir_i+J) \subseteq \Sigma(e_{\lambda}r_i-e_{\lambda}e_ir_i)+J \subseteq J$ since $e_{\lambda}e_i-e_{\lambda} \in J$ follows from $e_{\lambda} < e_i$ and Remark 5(b). Moreover $e_{\lambda}e_{\lambda} - e_{\lambda} \in J$ implies $e_{\lambda} \in J$, a contradiction. Hence $E \cap T = \emptyset$ and T is a proper right ideal of R containing J.

Let H be the collection of all proper right ideals, I, of R such that $T \subset I$ and $E \cap I = \emptyset$. Apply Zorn's lemma to this non-empty collection ($T \in H$), which is partially ordered by inclusion, to obtain a right ideal M, maximal with respect to $T \subseteq M$ and $E \cap M = \emptyset$. M is in fact a maximal right ideal of R since if I is a right ideal which properly contains M then there exists $e_{\lambda} \in E$ such that $e_{\lambda} \in I$. But $M \subseteq I$ implies $(1 - e_{\lambda})R \subseteq I$ and therefore $R = (1 - e_{\lambda})R + e_{\lambda}R \subseteq I$. Hence M/J is a maximal right ideal in *R/J* and $R/M \cong (R/J)/(M/J)$ has no proper right *R/J* submodules.

We claim *R/M* is a faithful irreducible *R/J* module. It is enough to show R/M is faithful. If not, then there exists $x + J \neq J$ such that for each $y + M \in R/M$, $(y + M)(x + J) \subseteq M$. Hence $yx \in M$ for all $y \in R$. By Remarks 4

and 5(c) there exists $e_{\lambda} \in E$ with $e_{\lambda} < x$ and $e_{\lambda} + j = rxs$ for some $j \in J$ and $r, s \in R$. Letting $y = r, e_{\lambda} + j = rxs = yxs \in Ms \subseteq M$ and so $e_{\lambda} \in M$, a contradiction.

REMARK 6. *R/J is a primitive ring with involution whose symmetric elements satisfy the pivotal monomial x but which has zero socle.*

PROOF. R/J has already been shown to be right primitive. Since $J^* = J$ in R the involution in R lifts to R/J . In addition if $x + J$ is symmetric in R/J then x can be assumed to be symmetric in R , since R does not have characteristic 2. Consequently if $s + J$ is symmetric in R/J then $s = s^2r$ in R and $sr = rs$ by Remark 3. Hence $s + j = (s + J)^2(r + J)$ and $(s + J)(r + J) = (r + J)(s + J)$.

All that remains is to show that *R/J* has zero socle. Assume not and let Q be the socle, i.e. $0 \neq Q$ is the unique minimal ideal of *R/J*. Let $0 \neq x + J \in Q$. Then the ideal generated by $x + J$, $(x + J)$, is O. Since $x \notin J$ there exists by Remark 5(c) $e_{\lambda} < x$ with $(e_{\lambda}, J) \subseteq (x, J)$ in *R*. Therefore in *R/J* we have $0 \neq (e_{\lambda} +$ $J \neq (x + J) = Q$, a contradiction. Hence Q is the zero ideal.

As the preceding proof shows we have obtained an example of a primitive ring with involution whose symmetric elements satisfy $s^2r = s$ where r depends on s and commutes with s. Chacron, Herstein, and Montgomery ([2]) have recently proved the following result: a primimtive ring with involution in which $s^2p_s(s)-s$ is central for each symmetric element, where $p_s(s)$ is a polynomial in s with integral coefficients, is at most 4-dimensional over its center. Our example thus indicates limitations on attempts to generalize this result.

2

In this section we let V be a right vector space over D a division ring and let C be a subfield of the center of D . We may view D as contained in $\text{Hom}_C (V, V)$, which then becomes a right D-space.

DEFINITION 7. For $f \in Hom_c(V, V)$, the D-rank of f is the dimension over D of the D-subspace of V spanned by *Vf.*

The following fundamental lemma is due to Amitsur [1, lemma 4, p. 214]:

LEMMA 8. Let b_1, b_2, \dots, b_k be right D-independent endomorphisms of V *over D. If* $V_0 \subseteq V$ is a finite dimensional right D-subspace then either there exists $v \in V$ such that vb_1, \dots, vb_k are D-independent modulo V_0 or some $\Sigma_i b_i d_i \neq 0$, $d_i \in D$, has finite D-rank.

Let R be primitive as in the introduction with $D = \text{Hom}_R(V, V)$ and C, the extended centroid of R, contained in the center of D. For the remainder of this section $A = RC + C$ will denote the central closure of R.

Vol. 22. 1975 PRIMITIVE RINGS 123

LEMMA 9.

(1) If a and b are elements of A such that $axb = bxa$ for all $x \in R$ then a and *b are C-dependent.*

(2) $A \otimes_c D \cong AD$ (the C-subalgebra of $\text{Hom}_C(V, V)$ generated by A and *D).*

(3) *In A, C-independence is equivalent to D-independence.*

(4) *If AD contains a nonzero finite D-ranked transformation then R contains a nonzero finite ranked transformation.*

PROOF. (1) is a special case of [6, theor. 2.1, p. 504]. The proof of (2) follows exactly as in [6, theor. 2.2, p. 504] and is included here for completeness. Define $\phi: A \otimes_{c} D \rightarrow AD$ by $\phi: a \otimes d \rightarrow ad$. ϕ is obviously a *C*-algebra homomorphism. If Ker ϕ contains a nonzero element $b = \sum_{i=1,n} a_i \otimes d_i$, $a_i \in A$, $d_i \in D$, then we may assume b is of minimal "length" n. Hence the $\{a_i\}$ and the $\{d_i\}$ are C-independent collections in A and D respectively. We may assume $n > 1$ since $ad = 0$ implies $a = 0$ and $d = 0$. For each $x \in R$,

$$
(a_1x\otimes 1)b - b(xa_1\otimes 1) = \sum_{i=2,n} (a_1xa_i - a_ia_i) \otimes d_i
$$

has length less than n and is in Ker ϕ . The C-independence of the $\{d_i\}$ gives $a_1xa_i-a_ixa_1=0$ for each $x \in R$, $i=2,\dots,n$. By part $(1),a_i = \beta_ia_1,\beta_i \in C$, $i = 2, \dots, n$, a contradiction to the C-independence of the $\{a_i\}$.

(3) is immediate from (2). For (4) assume *AD* contains a finite D-ranked transformation $0 \neq b = \sum_{i=1}^n a_i d_i$ which we assume to be of minimal "length" n. By the same reasoning as in the proof of (2) we obtain $a_i = \beta_i a_1$, $\beta_i \in C$, $i = 2, \dots, n$ since $a_1xb - bxa_1$ has finite D-rank in A for all $x \in R$. Therefore letting $\beta_1 = 1$, we have $b = a_1(\sum_{i=1,n}^n \beta_i d_i)$ and $0 \neq \sum_{i=1,n}^n \beta_i d_i \in D$. Hence $0 \neq a_1 \in A = RC + C$ has finite D-rank. Actually, a_1 has finite rank over D since $a_1 \in RC + C \subseteq \text{Hom}_D (V, V)$. Choose $r \in R$ such that $0 \neq ra_1 \in RC$. Then *RC* has a nonzero finite ranked transformation denoted $q = \sum_{i=1,n} r_i c_i$. There exist U_i , nonzero ideals of R, such that $c_iU_i \subseteq R$ for each i [5, sec. 2, p. 577]. The ideal $U = \bigcap_{i=1,n} U_i$ is nonzero since R is prime. Then $qU \subseteq R$ is a collection of finite ranked transformations in *R.* $qU \neq 0$ *, otherwise* $qUC = 0$ which is a contradiction since *UC* is a nonzero ideal of the prime ring *RC.* Hence R has nonzero socle and the proof is complete.

Now we assume that R has an involution $*$. The concept of weak density, used by Martindale [6, pp. 508-515], can be extended as follows:

DEFINITION 10. A subset S of R \subseteq Hom_p(V, V) is *-weakly dense in A if it has the following property: given v_1, v_2, \dots, v_k , D-independent elements of V,

 b_1, b_2, \dots, b_m , right D-independent elements of A and U_0 any finite dimensional D-subspace of V, then one of the following is true:

- (1) $\Sigma_{i=1,m}b_iD$ contains a nonzero transformation of finite D-rank;
- (2) $\Sigma_{i=1,m}b^*D$ contains a nonzero transformation of finite D-rank;

(3) There exists $r \in S$ such that $v_1rb_1, v_1rb_2, \dots, v_1rb_m$ are *D*-independent modulo U_0 and $v_i r = 0$ for $i > 1$.

LEMMA l I. *If R is a primitive ring with * then the symmetric elements, S, of R are *-weakly dense in A.*

PROOF. Let v_1, v_2, \dots, v_k be D-independent vectors in V, let b_1, b_2, \dots, b_m be right D-independent elements of A, and let U_0 be a finite dimensional D-subspace of V. Assume neither (I) nor (2) holds in Definition 10.

There exists $x \in R$ such that $v_1x \neq 0$ and $v_1x = 0$, $i > 1$. The D-independence of b^*, \dots, b^* in A follows from Lemma 9(3), since $\sum b^*c_i = 0$, $0 \neq c_i \in C$, implies $\Sigma \bar{c}_i b_i = 0$, which contradicts the D-independence of the ${b_i}$. Since (2) is false, Lemma 8 can be applied to the D-independent transformations b^*,\dots,b^* to obtain $w \in V$ such that $\{wb^*\}$ is a D-independent set modulo the subspace generated by v_1, v_2, \dots, v_k . At this point we deal with two cases:

a) If R has zero socle, pick $r \in R$ such that $v_i = 0$, $i = 1, 2, \dots, k$ and $wb^*r = wb^*, i = 1, 2, \dots, m.$ If $\{b^*r\}$ is a *D*-dependent set then $\Sigma(b^*r)d_i = 0$ for some $d_i \neq 0$. Hence $0 = \sum w(b^*r)d_i = \sum wb^*d_i$, a contradiction to the Dindependence of the $\{wb\}$. Consequently $\{b\}$ ^{*}, and hence $\{r^*b_i\}$, is a Dindependent set. Since R has no nonzero finite ranked transformations, Lemma 8 assures the existence of $v \in V$ such that $\{vr^*b_i\}$ is a D-independent set modulo U_{0} .

b) If R has nonzero socle M, then M is an ideal of A such that $M^* = M$ and M acts densely on V. Pick $y \in M$ such that $v_i y = v_i$, $i=1,2,\dots,k$ and wb ^{*} $y = 0$, $i = 1, 2, \dots, m$. Set $r = 1 - y$ and note that $v_i = 0$, $i = 1, 2, \dots, k$ and $wb^*r = wb^*, i = 1, 2, \dots, m.$ As in case a), $\{b^*r\}$, and hence $\{r^*b_i\}$, is a D-independent set. Since $y \in M$ and $y^* \in M$, it is clear that no nonzero D-linear combination of $(1 - y^*)b_1, \dots, (1 - y^*)b_m$ is of finite D-rank. Again apply Lemma 8 to obtain $v \in V$ with $\{vr^*b_i\}$ a D-independent set modulo U_0 .

We finish the proof by choosing $t \in R$ such that $v_1xt = v$. Then $v_1(xtr^* + rt^*x^*)b_i = vr^*b_i$, $j = 1, 2, \dots, m$ and $v_i(xtr^* + rt^*x^*) = 0$ for $i > 1$. Since $xtr^* + rt^*x^* \in S$, the proof is complete.

For the remainder of this section S will denote the symmetric elements of R.

LEMMA 12. Let $A_0 = \{a_1, a_2, \dots, a_p\}$ be a finite C-independent subset of A *and suppose neither AoD nor A ~D contains a nonzero finite D-ranked transfor-* *mation. Then for any sequence* a_{i_0}, a_{i_1}, \cdots *of elements of* A_0 *there exists* $v \in V$ *and a sequence*

$$
U_0, W_0, s_1, U_1, W_1, s_2, \cdots, U_l, W_l, s_{l+1}, \cdots
$$

such that

(1) $U_0 = \sum_{j=1, p} v a_j D$, $W_0 = \sum_{j \neq i_0} v a_j D$, $s_i \in S$ (2) $\{va_{i_0}s_1a_{i_1}s_2\cdots a_{i_{l-1}}s_l a_j\}_{j=1,\,p}$ is a D-independent set modulo U_{l-1} (3) $U_i = U_{i-1} + \sum_{j=1,p} v a_{i_0} s_1 a_{i_1} s_2 \cdots a_{i_{l-1}} s_l a_l D$ (4) $W_i = U_{i-1} + \sum_{j \neq i} v a_{i_0} s_1 a_{i_1} s_2 \cdots a_{i_{i-1}} s_i a_i D$ (5) $W_is_{i+1} = 0.$

PROOF. A_0 is a D-independent collection by Lemma 9(3). Since A_0D contains no nonzero finite D-ranked transformation, Lemma 8 yields $v \in V$ such that $\{va_i\}_{i=1,p}$ is a D-independent set of vectors in V. The D-subspace spanned by $\{va_i\}$ is denoted $U_0 = \sum_{i=1}^n v a_i D$. Let $W_0 = \sum_{i \neq i} v a_i D$. Since neither A_0D nor $A \, *D$ contains a nonzero finite D-ranked transformation we can apply Lemma 11 to obtain $s_1 \in S$ such that $va_{i_0}s_1a_i$ are all D-independent modulo U_0 , $j = 1, \dots, p$ and $W_0 s_1 = 0$. Proceeding inductively we obtain the desired sequence where U_i and W_i are defined as in (4) and (5) and s_{i-1} is chosen, using Lemma 11, so that $va_{i_0}s_1a_{i_1}\cdots a_{i_l}s_{l+1}a_j$ are all D-independent modulo U_i , $j = 1, 2, \dots, p$ and $W_{i}s_{i+1} = 0$.

THEOREM 13. *Let R be primitive with *. Suppose the symmetric elements, S,* of R satisfy a restricted GPM π . Then A_0D or A_0^*D contains a nonzero *transformation of finite D-rank.*

PROOF. Assume neither A_0D nor A_0^*D contains a nonzero transformation of finite D-rank. $\pi \in M$, so the indeterminates appearing in π are all distinct and after renumbering the subscripts on the indeterminates we may suppose that

$$
\pi=a_{i_0}x_1a_{i_1}x_2\cdots a_{i_{k-1}}x_ka_{i_k}.
$$

By Lemma 12 we have $v \in V$ and symmetric elements s_1, s_2, \dots, s_k such that $va_{i_0}s_1a_{i_1}\cdots s_ka_j$ are *D*-independent modulo U_{k-1} , $j=1,\dots,p$, and $W_{l-1}s_l=0$ for $l \leq k$.

Consider the substitution $\phi : R\langle x \rangle \to R$ defined by $\phi(x_i) = s_i$ for $1 \leq i \leq k$ and $\phi(x_i) = 0$ for $l > k$. $v\phi(\pi) \neq 0$ since $v\phi(\pi)$ is one of the D-independent vectors modulo U_{k-1} . $\phi(\pi) = \sum_i \phi(\sigma_i) d_i$, where $d_i \in A$ depends on ϕ and $\sigma_i \in P_{\pi} \cap M$. We will show that $v\phi(\sigma_i)=0$ for all i, a contradiction to $v\phi(\pi) \neq 0.$

We can assume each σ_i in the sum contains only the indeterminates x_i for $j = 1, \dots, k$. Let

$$
\sigma_i = a_{n_0}x_{m_1}a_{n_1}x_{m_2}\cdots x_{m_l}a_{n_l} \in M.
$$

Each x_i in σ_i occurs at most once. We divide the argument into two cases.

(1) Assume σ_i and π first disagree (from left to right) at x_i so that $x_i \neq x_i$ for $j = m_i$. Since $\sigma_i \in M$, $j > t$ and $v \phi(a_i x_i a_{i_1} \cdots a_{i_{t-1}} x_j) \in U_{i-1} s_i \subseteq W_i s_i \subseteq W_{j-1} s_j =$ 0 by Lemma 12. Hence $v\phi(\sigma_i)=0$.

(2) Assume σ_i and π first disagree at a_i , i.e., $a_i \neq a_n$. Then $t < k$ and σ_i does not end with a_{n_i} . $v\phi(a_{i_0}x_1 \cdots x_ia_{n_i}x_i) \in W_i$, $S_i \subset W_{i-1}S_i$ where σ_i begins with $a_{i_0}x_1a_{i_1}\cdots x_ia_{i_n}x_j$ and $j > t$. By Lemma 12, $W_{i-1}s_i = 0$ and hence $v\phi(\sigma_i) = 0$. $v\phi(\sigma_i) = 0$ in either case and we have the desired contradiction.

COROLLARY 14. The symmetric elements of a primitive ring R with involu*tion satis[y a restricted* GPM *i[and only if R has nonzero socle.*

PROOF. Sufficiency follows from Theorem 13 and Lemma 9(4). The necessity follows by choosing any rank one idempotent e in R and verifying that π = exeye is a restricted GPM for R. Hence π is a restricted GPM for S.

COROLLARY 15. If the symmetric elements of a primitive ring R with involu*tion satisfy a restricted pivotal monomial then* $R \cong D_n$, the $n \times n$ matrix ring *over D, a division ring.*

PROOF. Since $A_0 = \{1\}$, Theorem 13 states $A_0D = A_0^*D = D$ contains a nonzero finite D-ranked transformation and hence $(v : D) < \infty$.

Corollary 14 is a generalization of Amitsur's Theorem 16 in [1, p. 225] while Corollary 15 is a generalization of Drazin's result ([3, theor. 4, p. 357]) that a primitive ring satisfying a pivotal monomial must be D_n . The example of Section I shows that requiring the symmetric elements to satisfy a pivotal monomial does not guarantee any nonzero finite ranked transformations.

REFERENCES

1. S. A. Amitsur, *Generalized polynomial identities and pivotal monomials,* Trans. Amer. Math. Soc. 114 (1965), 210-226.

2. M. Chacron, I. N. Herstein, and S. Montgomery, to appear.

3. M. P. Drazin, *A generalization o[polynomial identities in rings,* Proc. Amer. Math. Sac. 8 (1958), 352-361.

4. W.S. Martindale, 3rd, *Lie isomorphisms o[prime rings,* Trans. Amer. Math. Sac. 142 (1969), 437-455.

5. W. S. Martindale, 3rd, *Prime rings satis[ying a generalized polynomial identity,* J. Algebra 12 (1969) , 576-584.

6. W. S. Martindale, 3rd, *Prime rings with involution and generalized polynomial identities, J.* Algebra 22 (1972), 502-516.

UNIVERSITY OF MASSACHUSETrS AMHERST, MASS., U.S.A.